Архимед, возможно, первым предложил математический способ вычисления π. Для этого он вписывал в окружность и описывал около неё правильные многоугольники. Принимая диаметр окружности за единицу, Архимед рассматривал периметр вписанного многоугольника как нижнюю оценку длины окружности, а периметр описанного многоугольника как верхнюю оценку. Рассматривая правильный 96-угольник, Архимед получил оценку
Чжан Хэн во 2 веке уточнил значение числа π, предложив два его эквивалента: 1) 92/29 ≈ 3,1724…; 2) ≈ 3,1622 В Индии Ариабхата и Бхаскара использовали приближение 3,1416. Брахмагупта в 7 веке предложил в качестве приближения
Около 265 года н. э. математик Лю Хуэй из царства Вэй предоставил простой и точный итеративный алгоритм для вычисления π с любой степенью точности. Он самостоятельно провёл вычисление для 3072-угольника и получил приближённое значение для π по следующему принципу:
Позднее Лю Хуэй придумал быстрый метод вычисления π и получил приближённое значение 3,1416 только лишь с 96-угольником, используя преимущества того факта, что разница в площади следующих друг за другом многоугольников формирует геометрическую прогрессию со знаменателем 4.
В 480-х годах китайский математик Цзу Чунчжи продемонстрировал, что π ≈ 355/113, и показал, что 3,1415926 < π < 3,1415927, используя алгоритм Лю Хуэя применительно к 12288-угольнику. Это значение оставалось самым точным приближением числа π в течение последующих 900 лет.
2 августа 2010 года американский студент Александр Йи и японский исследователь Сигэру Кондо рассчитали число ????? с точностью в 5 триллионов цифр после запятой.